34 research outputs found

    Multiscale Segmentation Techniques for Textile Images

    Get PDF

    Subband image coding using filter banks with non-uniform passband distribution

    Get PDF
    In this paper, subband filter banks with non-uniform passband distribution in frequency domain are studied. Several design examples are presented and compared with conventional uniform bandwidth filter banks. Image coding results show that filter banks with non-uniform bandwidth outperform filter banks with uniform bandwidth, especially in low bit rate coding.published_or_final_versio

    Thermomechanical fatigue life prediction for a marine diesel engine piston considering ring dynamics

    Get PDF
    A newly designed marine diesel engine piston was modeled using a precise finite element analysis (FEA). The high cycle fatigue (HCF) safety factor prediction procedure designed in this study incorporated lubrication, thermal, and structure analysis. The piston ring dynamics calculation determined the predicted thickness of lubrication oil film. The film thickness influenced the calculated magnitude of the heat transfer coefficient (HTC) used in the thermal loads analysis. Moreover, the gas pressure of ring lands and ring grooves used in mechanical analysis is predicted based on the piston ring dynamics model

    Competition between High-Speed Rail and Airline Based on Game Theory

    Get PDF

    Effect of Hardening Exponent of Power-Law Hardening Elastic-Plastic Substrate on Contact Behaviors in Coated Asperity Contact

    No full text
    The contact between a rigid flat and a coated asperity is studied using the finite element method. The substrate is assumed as the power-law hardening elastic–plastic material. The effect of the hardening exponent of the substrate (n) on the contact behaviors including contact load, area, coating thickness variation and stress in the coating, is investigated. It shows larger hardening exponent results in larger contact loads and larger maximum stresses in the coating at a given interference, and leads to smaller contact area at a specific contact load. The coating thickness becomes smaller monotonically as the interference increases for larger hardening exponents, while it recovers gradually after reaching the minimum value for the smaller n cases. This work will give some universal guidance to improve the contact performance for coatings by adjusting the hardening exponent of the substrate and by optimizing the coatings parameters

    Effect of Cylinder Liner Oil Grooves Shape on Two-Stroke Marine Diesel Engine's Piston Ring Friction Force

    No full text
    The dimensions, area densities, and geometry of macroscale surface textures may affect the performance of hydrodynamic lubrication interface. Reported in this paper are the investigations of the effect of surface textures bottom shapes on the friction forces between piston ring and cylinder liner for two-stroke marine diesel engine, using numerically generated textures and average Reynolds equation. These textures are on the cylinder liner surface in the form of circumferential oil grooves with different aspect ratios and different area densities. The hydrodynamic pressure distribution is also calculated using Reynolds boundary condition. The results revealed that the bottom shape could positively affect the friction between moving surfaces, as it could provide a microwedge or microstep bearing that tends to enhance the lubrication condition between piston ring and cylinder liner

    Effects of double parabolic profiles with groove textures on the hydrodynamic lubrication performance of journal bearing under steady operating conditions

    No full text
    The textures on the bushing surface have important effects on the performance of journal bearing. In this study, the effects of double parabolic profiles with groove textures on the hydrodynamic lubrication performance of journal bearing under steady operating conditions are investigated theoretically. The journal misalignment, asperity contact and thermal effects are considered, while the profile modifications due to running-in are neglected. The Winkler/Column model is used to calculate the elastic deformation of bushing surface and the adiabatic flow hypothesis is adopted to obtain the effective temperature of lubricating oil. The numerical solution is established by using finite difference and overrelaxation iterative methods, and the rupture zone of oil film is determined by Reynolds boundary conditions. The numerical results reveal that the double parabolic profiles with groove textures with proper location and geometric sizes can increase load carrying capacity and reduce friction loss under steady operating conditions, which effectively overcome the drawbacks of double parabolic profiles. This novel bushing profile may help to reduce the bushing edge wear and enhance the lubrication performance of journal bearing

    Effects of bushing profiles on the elastohydrodynamic lubrication performance of the journal bearing under steady operating conditions

    No full text
    The bushing profiles have important effects on the performance of journal bearing. In this article, the effects of plain profile, double conical profile, and double parabolic profile on the elastohydrodynamic lubrication of the journal bearing under steady operating conditions are investigated. The journal misalignment and asperity contact between journal and bushing surface are considered, while the modification of the bushing profiles due to running-in is neglected. Finite element method is used for the elastic deformation of bushing surface, while the numerical solution is established by using finite difference method and overrelaxation iterative method. The numerical results reveal that the double parabolic profile with appropriate size can significantly increase the minimum film thickness and reduce the asperity contact pressure and friction, while the maximum film pressure, load-carrying capacity, and leakage flow rate change slightly under steady operating conditions. This study may help to reduce the edge wear and prolong the service life of the journal bearing

    A multiobjective optimization of journal bearing with double parabolic profiles and groove textures under steady operating conditions

    No full text
    The double parabolic profiles can help journal bearing to reduce bushing edge wear, but it also reduces load carrying capacity and increases friction loss. To overcome these drawbacks, in this study, a multiobjective optimization of journal bearing with double parabolic profiles and groove textures is researched under steady operating conditions using Taguchi and grey relational analysis methods. Firstly, a lubrication model with journal misalignment, elastic deformation, asperity contact, thermal effect is established and formation cause of drawbacks is illustrated. Then, an orthogonal test with considering six factors, i.e., groove number, groove depth, groove length, axial width of double parabolic profiles, radial height of double parabolic profiles and groove location is conducted, meanwhile the effects and significances of each factor on response variables are revealed. Finally, an optimal parameters combination of six factors is determined by grey relational analysis, which gives maximum load carrying capacity and minimum friction loss. Overall, this study may give guidance on journal bearing design to enhance its tribological performance
    corecore